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Abstract

Background and purpose: Cerebral small vessel disease (SVD) has been suggested to

contribute to the pathogenesis of Alzheimer’s disease (AD). Yet, the role of SVD in

potentially contributing to AD pathology is unclear. The main objective of this study

was to test the hypothesis thatWMHs influence amyloid β (Aβ) levelswithin connected
default mode network (DMN) tracts and cortical regions in cognitively unimpaired

older adults.

Methods:Regional standard uptake value ratios (SUVr) fromAβ-PET andwhitematter

hyperintensity (WMH) volumes from three-dimensional magnetic resonance imaging

FLAIR images were analyzed across a sample of 72 clinically unimpaired (mini-mental

state examination ≥26), older adults (mean age 74.96 and standard deviation 8.13)

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI3). The association of

WMH volumes in major fiber tracts projecting from cortical DMN regions and Aβ-
PET SUVr in the connected cortical DMN regions was analyzed using linear regression

models adjusted for age, sex, ApoE, and total brain volumes.

Results: The regression analyses demonstrate that increased WMH volumes in the

superior longitudinal fasciculus were associated with increased regional SUVr in the

inferior parietal lobule (p= .011).

Conclusion: The findings suggest that the relation between Aβ in parietal cortex is

associated with SVD in downstream white matter (WM) pathways in preclinical AD.

The biological relationships and interplay between Aβ and WM microstructure alter-

ations that precede overtWMHdevelopment across the continuumof ADprogression

warrant further study.
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1 INTRODUCTION

Alzheimer’s disease (AD) pathology can be influenced by age, APOE

genotype, and other modifying factors, including cerebral small ves-

sel disease (SVD) (CENTER PCC, CORE NB, 2014; Honjo et al., 2012).

Despite findings from epidemiological and clinical–pathological stud-

ies supporting the relationship between SVD and AD (Al-Janabi et al.,

2018; Kim et al., 2016; Moscoso et al., 2020; Noh et al., 2014; Ortner

et al., 2015; Yi et al., 2018), the mechanistic role of SVD in potentially

contributing to the development and progression of AD pathology

remains unclear (Kim et al., 2020). To explore the effects of cerebral

SVD on the development of AD, and vice versa, studies that evaluate

the pathological interplay between amyloid β (Aβ) plaque deposition

and white matter (WM) alterations are needed. Findings from previ-

ous studies have demonstrated that WM alterations, including white

matter hyperintensities (WMHs), often occur prior to the overt detec-

tion of amyloid β deposition in preclinical AD (pAD) (Iturria-Medina

et al., 2016; Lee et al., 2016; Sachdev et al., 2013; Yew & Nation,

2017). Such findings support a hypothesis of retrograde degeneration,

wherein axonal injury distal to the neuronal cell body might upregu-

late amyloid production in connected cortical regions initiating and or

accelerating the pathogenesis of AD.

Previous studies examining the relationship between WMH and

AD pathology have shown that higher global WMH volume is asso-

ciated with prefrontal, posterior cingulate (PCC) and parietal Aβ
deposition (Ali et al., 2023; Zhou et al., 2015). Increased global Aβ
(measured in PET or cerebrospinal fluid [CSF]) has also been shown

to be associated with posterior subcortical and periventricular WMH

(Garnier-Crussard et al., 2020; Graff-Radford et al., 2019; Weaver

et al., 2019). The main limitation of these studies involves the common

use of global and or regional measures of WMH volume and Aβ depo-
sition, rather than restricting the analyses to WMH in discrete fiber

tracts and the upstream cortical regions where Aβ deposition occurs.
Recent studies on brain connectivity and functional neuroanatomy

have enabled a better understanding of the potential mechanisms

through which WM lesions may contribute to cognitive symptoms

through the disruption of the structurally connected cortical regions

that represent the major networks of the brain (Ter Telgte et al., 2018;

Tuladhar et al., 2016). Moreover, WMHs are associated with neu-

roinflammation that has been postulated to spread trans-axonally to

interconnected cortical regions (Ly et al., 2012; Radlinska et al., 2012;

Thiel et al., 2014). Among these networks, the default mode network

(DMN) (Simic et al., 2014) plays a critical role in internally directed

cognitive function. The DMN has been shown to exhibit not only func-

tional disconnection but also structural disruption associatedwithWM

microstructural disconnection associated with CSF Aβ levels (Brown

et al., 2018; Brown et al., 2019) or by WMHs that are associated with

cortical Aβ accumulation (Mito et al., 2018). However, the association

between WMH volumes specifically within DMN tracts, in relation to

Aβ deposition in interconnected DMN cortical regions, has not been

closely investigated.We specifically chose to focus on the DMN rather

than other brain networks because it is affected in both AD and SVD

(Al-Janabi et al., 2018; Habes et al., 2016; Jacobs et al., 2012; Taylor

et al., 2017; Weiler et al., 2014), suggesting it may be a good candi-

date network to explore in order to inform further understanding of

the potential biological association between twopathologies. Themain

objective of this study was to test the hypothesis that WMH is asso-

ciated with Aβ levels within areas of the DMN that are disconnected

by SVD early in the pathogenesis of AD in cognitively normal older

adults with early Aβ deposition pAD. We aimed to evaluate Aβ stan-
dard uptake value ratio (SUVr) in the cortical regions containing the

neuron cell bodies of the DMN in relation to downstream WMH in

interconnected axon tracts in the DMN.

2 METHODS

2.1 Participants

A total of 72 subjects with normal cognition (mini-mental state exam-

ination [MMSE] score greater than or equal to 26) were identified

in the multicenter network Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) at http://adni.loni.usc.edu, recruitment phase 3 by the

following criteria: complete demographic information (i.e., age, sex,

and education) and ApoE genotype, available availability of an AV-45

PET scan (to assess levels of Aβ), three-dimensional (3D) T1-weighted

magnetic resonance imaging (MRI) scan (for spatial normalization and

cortical parcellation), and 3D FLAIR scan (to assess WMH). Only sub-

jects from ADNI 3 were included as previous ADNI cohorts did not

include 3D FLAIR acquisitions required for precise WMH localization

in DMN fiber tract pathways. Unfortunately, due to COVID interfer-

ence with ADNI 3 recruitment and image acquisition, only a small

cohort was available for the present analysis. Of note, we used all par-

ticipantswith available data at the timeof this analysis. Details ofADNI

inclusion criteria, clinical procedures, and methodology are available

elsewhere (Jack et al., 2008; Petersen et al., 2010). A total of eight

participants were excluded from the analysis on the basis of missing

data required for the analysis. Excluded participants did not differ from

those included in the analysis in regards to age, sex, ApoE, or MMSE

scores (data not shown).

2.2 Acquisition of florbetapir and MRI images

The MPRAGE sequence parameters included repetition time

(TR)= 2300ms, echo time (TE)= 2.26ms, inversion time (TI)= 900ms,

and a spatial resolution of 1 × 1 × 1 mm3. The 3D FLAIR sequence

included TR = 4800 ms, TE = 119 ms, TI = 1650 ms, and a spatial

resolution of 1.2 × 1 × 1-mm3 voxel resolution. AV-45 PET scans

were acquired on a variety of different PET scanners (Siemens, GE,

and Philips) harmonized for ADNI data collection. AV-45 PET scans

consisted of 4 × 300-s frames measured 50 min after injection of

10± 1.0mCi of 18F-Florbetapir AV-45.
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TABLE 1 A description of the atlas-based fiber tracts connecting cortical regions in the default mode network (DMN).

DMN regions

JHUDTI-basedwhitematter

atlases (Hua et al., 2008) FreeSurfer parcellation

MTL (Wu et al., 2016; Chen et al., 2019;

Hodgetts et al., 2019)

CING-Hippo Entorhinal, parahippocampal

MPFC (Araque Caballero et al., 2018;

Burks et al., 2017)

IFOF Rostral anterior cingulate, caudal anterior

cingulate, andmedial orbitofrontal

PCC (Wu et al., 2016) CING PCC

IPL (Barbeau et al., 2020) SLF Inferior parietal

Note: The fiber tracts connecting theDMNcortical regions included theCING fromPCC (Wuet al., 2016), CING-Hippo fromMTL (Chen et al., 2019;Hodgetts

et al., 2019; Wu et al., 2016), SLF from IPL (Barbeau et al., 2020), and the IFOF fromMPFC (Araque Caballero et al., 2018; Burks et al., 2017; Damoiseaux &

Greicius, 2009; Greicius et al., 2009; Papma et al., 2014; Rieckmann et al., 2016; Taylor et al., 2017; VanDenHeuvel et al., 2009).

Abbreviations:CING, cingulum;CING-hippo, cingulum–hippocampus tract; IFOF, inferior fronto-occipital fasciculus; IPL, inferior parietal lobules; JHU-ICBM,

Johns Hopkins University International Consortium for BrainMapping probabilistic fiber tract atlas; MPFC, medial prefrontal cortex; MTL, medial temporal

lobe; PCC, posterior cingulate; SLF, superior longitudinal fasciculus.

2.3 Florbetapir amyloid PET processing and
calculation of SUVr

Each participant’s MPRAGE image was registered to the FLAIR images

using FSL’s linear registration tool (FLIRT) (Jenkinson et al., 2002) and

then parcellated with FreeSurfer (v6.0) to derive cortical regions of

interest for PET quantification. (Fischl et al., 1999, 2002) Preprocessed

Florbetapir images were co-registered to the FreeSurfer-parcellated

T1 image, which was closest in time, using FreeSurfer’s function

mri_coreg as implemented in PETSurfer (Greve et al., 2014, 2016).

Resultswere visually inspected toensure correct co-registration.DMN

regional amyloid burden was calculated using SUVr in the ADNI cor-

tical summary region normalized by the whole cerebellum reference

region.

2.4 Atlas-based fiber tract connecting DMN

We analyzed WMH volumes within major fiber tracts projecting

from DMN regions using the Johns Hopkins University International

Consortium for Brain Mapping probabilistic fiber tract atlas (JHU

DTI-based WM atlases) (Hua et al., 2008). The core DMN regions

analyzed included the medial prefrontal cortex (MPFC), PCC, inferior

parietal lobules (IPLs), and medial temporal lobe (MTL) (Whitfield-

Gabrieli & Ford, 2012). The fiber tracts connecting the DMN cortical

regions included the cingulum (CING) from PCC (Wu et al., 2016),

cingulum–hippocampus tract (CING-Hippo) from MTL (Chen et al.,

2019; Hodgetts et al., 2019; Wu et al., 2016), superior longitudinal

fasciculus (SLF) from IPL (Barbeau et al., 2020), and the inferior fronto-

occipital fasciculus (IFOF) from MPFC (Araque Caballero et al., 2018;

Burks et al., 2017; Damoiseaux & Greicius, 2009; Greicius et al., 2009;

Papma et al., 2014; Rieckmann et al., 2016; Taylor et al., 2017; VanDen

Heuvel et al., 2009) (Table 1).

2.5 MRI analysis

2.5.1 WMH segmentation

3D FLAIR images were used to quantifyWMHvolume using semiauto-

mated process that was developed in our lab as previously described

(Bahrani et al., 2017, 2019). Briefly, 3D MPRAGE was co-registered

to the FLAIR image using linear six parametric rigid body registration

(FSL software library v5.0.8). TheBrainExtractionTool (BET) (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/BET) was used for non-brain tissue stripping

of FLAIR images and to generate a binary brain mask. The binary brain

mask was multiplied by the MPRAGE image to remove the non-brain

tissue voxels. Statistical Parametric Mapping (SPM12) tool is oper-

ated based on MATLAB software (http://www.fil.ion.ucl.ac.uk/spm/)

and was used for multimodal segmentation to create separate native-

space images representing gray matter (GM), WM, and CSF using an

in-house segmentation-validated template created from 145 images

of healthy older adults (Smith et al., 2016). WM was modeled as two

separate tissue classes to capture allWM intensities. The twoWMseg-

mentation images were summed and converted to a binary WMmask

in the native space. TheWM binary mask was multiplied by the FLAIR

image to generate a WM image that is mixed with normal appearing

WM andWMH voxels. Gaussian fit was performed to the histogram of

WM voxels was used to set the threshold for WMH as the mean plus

3 × standard deviation, corresponding to a p-value of .01. Manual edit-

ing was required to remove false positive and artifact voxels from the

total WMHmask. The total volume of the WMH voxel was the sum of

allWMHmask voxels (Bahrani et al., 2017, 2019).

2.5.2 Tract-related WMH volume

Each participant’sMPRAGE imagewas registered to their FLAIR image

using FLIRT (Jenkinson et al., 2002) and then registered to theMNI152
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F IGURE 1 Diagram of the tract-relatedwhitematter hyperintensity (WMH) volume quantification protocol. TotalWMHvolumes in each
tract were calculated bymultiplying the registered binary tract to theWMHmask to derive theWMHvolumewithin each specific fiber tract. (a)
shows the scatterplot of the fitted regression line of theWMHvolumes in SLF as independent variable and IPL SUVr as the dependent variable. (b)
shows the scatterplot of the fitted regression line of theWMHvolumes in IFOF as independent variable andMPF SUVr as the dependent variable.
(c) shows the scatterplot of the fitted regression line of theWMHvolumes in cingulum as independent variable and PCC SUVr as the dependent
variable. (d) shows the scatterplot of the fitted regression line of theWMHvolumes in cingulum. hippocampus tract as independent variable and
MTL SUVr as the dependent variable.

T1 template using FSL’s nonlinear registration tool with standard

parameters to generate the transformation matrix. Using the inverse

transformation matrix and inverse nonlinear warping parameters, the

JHU-ICBM-tracts atlas in MNI152 space (Hua et al., 2008) was then

registered back to each participant’s native space, effectively aligning

it with their FLAIR image in the native space. Total WMH volumes in

each tract were calculated bymultiplying the registered binary tract to

the WMH mask to derive the WMH volume within each specific fiber

tract (Figure 1).

2.6 Statistical analyses

Statistical analyses were conducted using SPSS, version 26.0 (SPSS,

Inc.). Significance was set at p < .0125 after the Bonferroni correction.

To validate the relationship between regional Aβ and WMH burden,

we used regression analysis between SUVrwithin GMof DMN regions

as the dependent variable and WMH volumes within fiber tracts as

independent variables. The general linear model was adjusted for the

covariates age, sex, ApoE, and total intracranial volumes. WMH vol-

umewithin each fiber tract was logarithmically transformed due to the

positive skewed distribution for the statistical analysis. The regression

analyses assessing the relationship between Aβ and WMH were fit to

the data using the following equation:

PET SUVr GMof DMN = b0 + b1 WMHvolume (log−transformed)

in JHUDTI − basedWMatlases + bX

represents beta coefficients and adjustment covariates.

3 RESULTS

The demographic and imaging characteristics of the sample are pro-

vided in Table 2. Briefly, the sample included 33 women and 31 men

with amean age of 75.7± 7.2 years.

3.1 Association between WMH volume IN
JHU-ICBM-tracts atlas and Aβ burden in DMN
regions

For each fiber tract, the linear regression analyses were computed,

with Aβ within the tract’s GM ROI as the dependent variable. The

independent variables included WMH in each fiber tract, controlled
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TABLE 2 Demographic, clinical, imaging, and genetic
characteristics of the cohort studied.

N Mean (SD)

Age 72 74.96 (8.13)

MMSE score 72 28.39 (1.83)

IPL SUVr 59 1.52 (.29)

MPF SUVr 59 1.46 (.29)

MTL SUVr 40 1.3 (.11)

PCC SUVr 67 1.55 (.31)

Total intracranial volumes 72 1455.26 (132.46)

WMHvolumes 69 4.43 (7.13)

LogWMH in SLF 55 1.12 (.66)

LogWMH in IFOF 55 1.14 (.65)

LogWMH in cingulum 25 .92 (.94)

LogWMH in cingulum hippocampus 25 .95 (.74)

APOE e4 alleleN (%) copy 1 71 7 (9.9%)

APOE e4 alleleN (%) copy 2 71 26 (36.6%)

SexmaleN (%) 72 37 (49.3)

Note: All the DMN SUVr values after excluding participants have SUVr less

than 1.17.

Abbreviations: DMN, default mode network; IFOF, inferior fronto-occipital

fasciculus; IPL, inferior parietal lobules; MMSE, mini-mental state exam-

ination; MPFC, medial prefrontal cortex; MTL, medial temporal lobe; N,
numbers; PCC, posterior cingulate; SD, standard deviation; SLF, superior

longitudinal fasciculus; SUVr, standardized uptake value ratio;WMH, white

matter hyperintensities.

for age, sex, ApoE, and total intracranial volumes. The adjusted lin-

ear regression analyses demonstrated that increasedWMHvolumes in

SLF were associated with increased regional SUVr in IPL with p= .011

(Figure 2a). The analyses also detected marginally significant rela-

tion between MPF Aβ burdens with WMHs in IFOF (p-value .074)

(Figure 2b). In contrast, the regression models failed to detect signif-

icant relationships between the cingulum with PCC, or CING-Hippo

with MTL (p = .744 and .740, respectively) (Figure 2c,d) (Table 3).

The adjusted linear regression analyses also found no significant asso-

ciations between global amyloid burden and total WMH volumes

(standardized beta coefficient= .053, p= .922).

4 DISCUSSION

The present data demonstrate thatWMHvolumes inmajor fiber tracts

projecting from DMN regions are associated with upstream Aβ lev-

els in connected DMN cortical regions. These data are consistent

with recent studies demonstrating that WMH volumes in individual

tracts explain more variance in the pathogenesis of AD than total or

regional WMH burden, emphasizing the importance of lesion loca-

tion when evaluating the clinical consequences of WMH (Seiler et al.,

2018). Identifying strategic WM tracts in which WMHs have most

impact on Aβ burden would improve our understanding of the func-

tional impact of SVD and provide a theoretical basis for understanding

the abnormal neural mechanism of AD. These data suggest the possi-

bility of a retrograde hypothesis wherein SVD in DMN pathways may

lead to an upregulation of Aβ production in proximal neuronal cell

bodies, initiating and or accelerating the pathogenesis of AD. Indeed,

it is well established that ischemic injury proximal to neuronal cell

bodies leads to an upregulation of Aβ production (Pluta et al., 2013,

2020), and so a retrograde hypothesis whereby more distal injury

to connected axons also leads to an upregulation of Aβ production

remains a plausible explanation for the association of ADand SVD seen

across many studies (Ali et al., 2023; Kanaan et al., 2013; Kim et al.,

2020; Salvadores et al., 2020) that is further supported by the present

data.

In contrast to the present findings, a recent study that used ADNI

(recruitment phases GO and II) found no association between the lev-

els of global amyloid burden and WMH in any of the fiber tracts of

the DMN (Taylor et al., 2017). The present study uses regional amy-

loid burden rather than global measures of Aβ refines such analyses,

establishing a direct relationship between WMH volumes in SLF and

Aβ burden in IPL. A similar, albeit not statistically significant rela-

tionship was seen between WMH volumes in IFOF and Aβ burden

in MPF. It is worth noting that no such significant relationships were

found between CINGwith PCC and CING-Hippo withMTL in the pAD

cases studied. This discrepancymay be explained by understanding the

neuroanatomic involvement of DMN regional involvement at distinct

stages ofAD, especially given that the present study sought to evaluate

pAD specifically. Post-mortem pathologic studies have demonstrated

that Aβ deposition follows a specific pattern of spread (Thal et al.,

2002). The topographical pattern of Aβ accumulation in pAD begins in

theprecuneus,medial orbitofrontal, andPCCcortices (Choet al., 2016;

Grothe et al., 2017; Mattsson et al., 2019; Pfeil et al., 2021; Sakr et al.,

2019), then the inferior parietal (Palmqvist et al., 2017), and finally

occipital and MTLs in the later stages of the disease. As such, in the

pAD cohort studied, amyloid levels may have already reached a zenith

in the PCC and may not have yet begun in the MTL narrowing the dis-

tributions ofAβ SUVr in these regions required to see associationswith
downstream tract WMH-mediated injury. Conversely, at the stage of

pAD, the accumulation of Aβ in the IPL and MPF cortices is an active

process, broadening the distribution and allowing the detection of the

influences of WMH on Aβ accumulation in these DMN regions. Fur-

ther work exploring the association of regional WMH and cortical Aβ
deposition in connectedDMN regions is needed to advance our under-

standing of the interplay betweenWMH and Aβ across the pathologic
and clinical continuum of AD.

It is also possible that the involvement of only someDMNpathways

could be due to the small sample size (only 25 participants) that had

WMH involving the CING and CING-Hippo tracts. WMH affects WM

tracts differently (Seiler et al., 2018); some tracts, including IFOF and

SLF, appear to be particularly vulnerable to WMH development com-

pared to CING and CING-Hippo (Petersen et al., 2022; Taylor et al.,

2017). It is also possible that these findings are related to the popu-

lation studied, as ADNI excludes participants with significant vascular

risk factors and or WMH burden that may limit the analysis of the
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F IGURE 2 Scatterplots show association betweenwhitematter hyperintensity (WMH) volume IN JHU-ICBM-tracts atlas and amyloid β
(Aβ) burden in default mode network (DMN) regions. Figure 2 shows the scatterplot of the fitted regression line of theWMHvolumes as
independent variable and regional standard uptake value ratio (SUVr) as the dependent variable. All p-values are adjusted for the covariates age,
sex, ApoE, and total intracranial volumes. R2 is the proportion of variance in the DMN regions SUVr that was explained by theWMHvolumes in
JHU-ICBM-tracts without any adjustment. CING-hippo, cingulum–hippocampus tract; IFOF, inferior fronto-occipital fasciculus; IPL, inferior
parietal lobules; MPFC, medial prefrontal cortex; MTL, medial temporal lobe; PCC, posterior cingulate; SLF, superior longitudinal fasciculus. (a)
shows the scatterplot of the fitted regression line of theWMHvolumes in SLF as independent variable and IPL SUVras the dependent variable. (b)
shows the scatterplot of the fitted regression line of theWMHvolumes in IFOF as independent variable andMPF SUVr as the dependent variable.
(c) shows the scatterplot of the fitted regression line of theWMHvolumes in cingulum as independent variable and PCC SUVr as the dependent
variable. (d) shows the scatterplot of the fitted regression line of theWMHvolumes in cingulum. hippocampus tract as independent variable and
MTL SUVras the dependent variable.

TABLE 3 Independent effects of white matter hyperintensity (WMH) IN Johns Hopkins University International Consortium for Brain
Mapping (JHU-ICBM) probabilistic fiber tracts atlas on default mode network (DMN) amyloid β (Aβ) standard uptake value ratio (SUVr) burden.

95% confidence interval

DMN regions

WMH in JHUDTI-based

whitematter atlases

Standardized

beta coefficient p-Value Adjusted R2 Upper limit Lower limit

Effect size

(Cohen’s)

PCC SUVr Cingulum .059 .744 .04 −.112 .152 .20

MTL SUVr Cingulum hippocampus .054 .740 .05 −.1 .068 .22

IPL SUVr SLF .365 .011 .20 .052 .383 .5

MPF SUVr IFOF .262 .074 .09 −.032 .291 .31

Note: The adjusted R2 is the proportion of variance in regional SUVr that was explained by the model discounted for age, sex, APOE, and WMH volumes in

JHU-DTI-basedwhitematter atlas tracts. (All coefficient β values are adjusted for the covariates age, sex, APOE, and ICV.)

Abbreviations: ICV, total intracranial volumes; IFOF, inferior fronto-occipital fasciculus; IPL, inferior parietal lobules; MPFC, medial prefrontal cortex; MTL,

medial temporal lobe; PCC, posterior cingulate; SLF, superior longitudinal fasciculus.

full impact of WMH within discrete WM tracts evident in a more

generalizable population.

It is important to understand that the present study cannot deter-

mine causality as it investigated associations only. Although our

hypothesis is that WMH influences upstream Aβ deposition through

increased Aβ production, it is also possible that Aβ-mediated neu-

ronal injury leads toWallerian degeneration, inflammation, and/or the

demyelination of axonal projection pathways that are supported by

many prior studies (Alber et al., 2019; Dadar et al., 2020; Lorenzini

et al., 2022;McAleeseet al., 2017;Phuahet al., 2022; Schoemakeret al.,

2022) that may eventually manifest as WMH in these DMN tracts.

Indeed, WMHs are not always caused by SVD but are well recognized

to be caused by Wallerian degeneration after any injury, inflammation

in a variety of CNS diseases, and by the prototypic demyelination seen

in multiple sclerosis and related disorders (Leys et al., 1991; Medana

& Esiri, 2003; Rotshenker, 2011). Unfortunately, definitive imaging
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F IGURE 3 Whitematter hyperintensities (WMH) influence distal cortical β-amyloid accumulation in default mode network pathways: (a) this
study aimed to test the hypothesis that vascular injury (WMH) distal to the neuronal cell bodymight upregulate amyloid production in connected
cortical regions initiating and or accelerating the pathogenesis of Alzheimer’s disease (AD) in cognitively normal older adults with early amyloid β
(Aβ) deposition (preclinical AD [pAD]). (b) After the evaluation of the association ofWMHvolumes inmajor fiber tracts projecting from cortical
default mode network (DMN) regions and Aβ-PET standard uptake value ratio (SUVr) in the connected cortical DMN regions, we found increased
WMHvolumes in the superior longitudinal fasciculus (SLF) were associated with increased regional SUVr in the inferior parietal lobule (IPL).

characteristics distinguishing these causes of WMH are limited at

present; further animal model work in the area of mixed AD-SVD is

needed to explore thehumanassociations demonstrated in thepresent

study.

The main limitations of our study include the relatively small sam-

ple size available for this analysis from ADNI 3. Additional exploration

after ADNI 3 and other cohorts with both Aβ-PET and 3D FLAIR is

warranted. Another limitation of this study is applying an atlas-based

fiber tract ROI approach to assessing DMN brain regions rather than

using direct DTI measures. Due to natural variability in precise neu-

roanatomic localization of such pathways, it is possible that the true

contributions of WMH within DMN tracts were over- or underrepre-

sented in specific individuals in the cohort. It should be noted, however,

that an atlas-based approach has the advantage of avoiding problems

of fiber tracking in degenerating pathways. Anothermajor limitation of

the present study is the selection bias as ADNI excludes participants

with significant evidence for cerebrovascular disease, which may limit

analysis of the full impact of WMH and other cerebrovascular injuries

in relation to Aβ. Despite these limitations, it should be noted that

focusing on the type, location, and connectivity of lesions rather than

simply the presence or absence of lesions is the main strength of the

present work.

5 CONCLUSION

In conclusion, the current results support the hypothesis of localized

effects of WMH in axonal projections on cortical Aβ SUVr in DMN

regions and tracts (Figure 3). Further studies testing our hypothesis at

the level of microstructural damage are needed, especially given the

findings from recent DTI studies demonstrating that WM microstruc-

tural alterations (even in the absence of overt WMH) are anatomically

connected to the cortical brain regions with significant Aβ deposition
at the earliest stages of disease within the DMN (Collij et al., 2021;

Palmqvist et al., 2017; Rieckmann et al., 2016). Further studies are also

needed to define longitudinal patterns involved in the association of

WMH on Aβ deposition in participants with mild cognitive impairment

and dementia to allow a complete understanding of the full disease

course. Suchwork is critical for the optimal timing of disease-modifying

interventions thatmay targetAD, SVD, andmixedpathologic processes

that aremost common in the general population.
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